Activating transcription factor 6 (ATF6) sequence polymorphisms in type 2 diabetes and pre-diabetic traits.

نویسندگان

  • Winston S Chu
  • Swapan Kumar Das
  • Hua Wang
  • Juliana C Chan
  • Panos Deloukas
  • Philippe Froguel
  • Leslie J Baier
  • Weiping Jia
  • Mark I McCarthy
  • Maggie C Y Ng
  • Coleen Damcott
  • Alan R Shuldiner
  • Eleftheria Zeggini
  • Steven C Elbein
چکیده

Activating transcription factor 6 (ATF6) is located within the region of linkage to type 2 diabetes on chromosome 1q21-q23 and is a key activator of the endoplasmic reticulum stress response. We evaluated 78 single nucleotide polymorphisms (SNPs) spanning >213 kb in 95 people, from which we selected 64 SNPs for evaluation in 191 Caucasian case subjects from Utah and between 165 and 188 control subjects. Six SNPs showed nominal associations with type 2 diabetes (P = 0.001-0.04), including the nonsynonymous SNP rs1058405 (M67V) in exon 3 and rs11579627 in the 3' flanking region. Only rs1159627 remained significant on permutation testing. The associations were not replicated in 353 African-American case subjects and 182 control subjects, nor were ATF6 SNPs associated with altered insulin secretion or insulin sensitivity in nondiabetic Caucasian individuals. No association with type 2 diabetes was found in a subset of 44 SNPs in Caucasian (n = 2,099), Pima Indian (n = 293), and Chinese (n = 287) samples. Allelic expression imbalance was found in transformed lymphocyte cDNA for 3' untranslated region variants, thus suggesting cis-acting regulatory variants. ATF6 does not appear to play a major role in type 2 diabetes, but further work is required to identify the cause of the allelic expression imbalance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Association of amino acid variants in the activating transcription factor 6 gene (ATF6) on 1q21-q23 with type 2 diabetes in Pima Indians.

Activating transcription factor 6 (ATF6) is important for protective cell response to accumulation of unfolded and misfolded proteins in endoplasmic reticulum, and disturbances of this process can contribute to beta-cell apoptosis. We analyzed the structural gene located within a region on 1q21-q23 linked with type 2 diabetes in several populations for variants in the Pima Indians. Functionally...

متن کامل

Obesity Has an Interactive Effect with Genetic Variation in the Activating Transcription Factor 6 Gene on the Risk of Pre-Diabetes in Individuals of Chinese Han Descent

Endoplasmic reticulum (ER) stress is one of the contributing factors to the development of β-cell failure in type 2 diabetes. ER stress response through ATF6 has been shown to play an important role in insulin resistance and pancreatic β-cell function. We investigated whether genetic polymorphisms in ATF6 were associated with the risk of pre-diabetes in a Chinese Han population, and whether the...

متن کامل

Activating transcription factor 6 polymorphisms and haplotypes are associated with impaired glucose homeostasis and type 2 diabetes in Dutch Caucasians.

CONTEXT Activating transcription factor 6 (ATF6) is critical for initiation and full activation of the unfolded protein response. An association between genetic variation in ATF6 and type 2 diabetes (DM2) was recently reported in Pima Indians. OBJECTIVES To investigate the broader significance of this association for DM2, replication studies in distinct ethic populations are required. We inve...

متن کامل

Induction of Activating Transcription Factor 6 via Activation of ERK and ROS-P38 MAPK is Related to Methylglyoxal-Induced Cytotoxicity in Human Retinal Pigment Epithelial Cells

Methylglyoxal (MGO), a reactive α-oxoaldehyde produced by glucose metabolism, is elevated in several diabetic complications, including diabetic retinopathy. The breakdown of retinal pigment epithelial cells is implicated in the progression of diabetic retinopathy. Increased concentrations of MGO lead to retinal pigment epithelial cell death. In this study, we investigated the involvement of act...

متن کامل

Defective podocyte insulin signalling through p85-XBP1 promotes ATF6-dependent maladaptive ER-stress response in diabetic nephropathy

Endoplasmic reticulum (ER) stress is associated with diabetic nephropathy (DN), but its pathophysiological relevance and the mechanisms that compromise adaptive ER signalling in podocytes remain unknown. Here we show that nuclear translocation of the transcription factor spliced X-box binding protein-1 (sXBP1) is selectively impaired in DN, inducing activating transcription factor-6 (ATF6) and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Diabetes

دوره 56 3  شماره 

صفحات  -

تاریخ انتشار 2007